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A technique for measuring local particle concentrations in dispersed flows is considered. Oper- 
ation of the optoelectronic apparatus used is analyzed for "single particle" and "multiparticle" 
cases. 

The simple method of dispersed particle concentration measurement proposed in [i] has been employed 
successfully in the study of two-phase flows of various types. 

Below we will present a detailed description and analysis of this method with consideration of the follow- 
ing major assumptions: T, the optical thickness of the dispersed medium studied, satisfies "single" scattering 
conditions; the particle diffraction parameter ps>> i; the particle radius r s satisfies the condition r s < rf (here 
and below the index s indicates parameters of the dispersed particles). 

One beam of a differential circuit laser [2] will be used with wave vector k~2 and power Po, focused on 
the portion of flow to be studied. The light scattered by the particles is collected by an optical receiving sys- 
tem located in the plane xy at an angle [3 to the direction 42 (Fig. l a). The dimensions of the region to be con- 
sidered depend on the radius of the laser beam rf in the constriction region and the parameters of the receiver 
optical system, being defined by the following expressions: 

hx=2rlcos__l[3; h y = a s i n _ l [  ~ [ d_~ 1]; h z = 2 r f .  (1) 

The radius rf at the level exp (-1) and the divergence angle 0, defining the degree  of paral le l ism within 
the limits of the region Ay, a re  found f rom the expressions [3]: 

{i I I1112 
r~= ~-o (1 --do/fo)2+ (Re/2/o) z JJ ' 

O= 

(2) 

The laser beam electric field complex amplitude distribution E(R, t) in the measurement region for the 
case of a Gaussian beam is given by 

----- exp 2 r~ + i (koR --(p) . (3) 

from 
The light intensity, or mean energy density in the beam section in the measurement volume, is found 

1 I / /Z~-  Po ( xZ§ 2) 
(4) 

Assuming that r s << rf the light flux Ps(/3) scattered by a fixed particle with coordinates XKZ K into solid angle 
A~ in the direction ~s at an angle /3 to ~2 is equal to 

p~ (f~) = ! (x.z.) f d~. (OJ~) = I (x~z.) S.  (0~, ~, A~). (5) 
A 9  
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Fig. i. Experimental geometry: a) overview; i, 3, receiver objec- 
tives with aper ture  diaphragms for  sca t te red  (1) and d i rec t  (3) 
beams;  2, 4 point diaphragms ahead of type FF, U-68 photomulti-  
pl iers  for f i r s t  (PM-1) and second (PM-2) channels; 5, e lect ronic  
signal process ing  c i r cu i t ry  for  both channels,  b) Diagram of d i rec t  
and sca t te red  beams.  

In writing Eq. (5) it was assumed that the change in light intensity over the particle can be neglected. 
Eqs. (4) and (5) there follows an expression for the "optical signal" at the photodetector input 

From 

Ps. ([3) = % nr---~f exp x~ z. (6) ,~ s. (o~, 8, AQ~). 

Light flux (6) defines the value of the constant e lec t r ica l  signal at the photodetector  output. Introducing the 
quantity •  which charac te r i zes  the sensi t ivi ty  of the r e ce iv e r  sys tem,  we obtain f rom Eq. (6) an express ion  
for the signal at the photomultiplier  output f rom the fixed K- thsca t t e r ing  par t ic le  with coordinates xKY K in 
the interval  Ay: 

~e { Po ( x2 4- z 2) ] 
] , ( [ ~ ) - - - k ~  % ~  exp - - Z  2 c 2 S.(9~, [~,AfL). �9 (7) 

In analyzing dispersed flows as functions of particle concentration and size of the measurement region 
there exist two modes of measurement system operation: "multiparticle" and 'single particle." 

The "multiparticle" mode is realized under the condition NsV >> i, where NsV = Ns" V is the mean sta- 
tistical number of particles in the volume V; N s, mean particle concentration in the measurement region. In 
the given situation the mean Cover time) value of the photocurrent at the photomultiplier output can be calcul- 
ated from the expression 

NsV 

(8) 

In Eq. (8) M is the mathematical  expectancy; a line above a quantity denotes averaging over  t ime; the double 
brackets  <(}) denote averaging over  coordinates and the set  of par t ic les .  Now in Eq. (7) we take x K = Us(t-tK) 
and pe r fo rm the averaging operations of Eq. (8) for  ii( fl, t), and we obtain 

ix(~, t)= Nwi lov) [kr hvo 
J 

The "single particle" operating mode occurs at NsV -< i. Now the photocurrent i2(~, t) is a sequence of 
pulses with random amplitude and phase: 

n T 

i~ (l~,. t) = ~ i o ~  (t - -  i~), ( lo)  
h = l  ~' 
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Fig. 2. Local mean velocity (i) 

and concentration (3) of particles 
and gas velocity (2) in two-phase 
turbulent blunt jet. z, rnm. 

where ioK is the random amplitude of the signal from the K-thparticle; ~ (t-tK) , a functLon characterizing the 
form of the signal; tK, moment of arrival of the K-thparticle at the center of the measurement volume. As- 
suming as a first approximation that the forms of the pulses from different particles are identical, the mean 
value of the photocurrent is found from [4] 

nT f i2(~, t) = T M(io~) ~ ( t - - t K )  dr, (11) 

where n T = UsAzAyNsT is the number of particles which during the measurement time T pass through the 
section AzAy of the measurement volume. From Eq. (ii) for i2(fl, t) it follows that 

�9 { n---%-e *or z)}<S(p~, ~, A~.,)> i~(~, t )=  N~v < Iov > k~ hvo 
(12) 

Within the framework of the assumptions made, Eqs. (9) and (12) reflect the direct relationship between i (fi, t) 

and NsV in both modes. In the general case Eqs. (9) and (12) must contain an auxiliary factor defining the deg- 
ree of attenuation of the direct beam P0 and the light flux lOs(~) scattered into the reception angle. Omitting 
the averaging symbols, we rewrite Eqs. (9) and (12) with consideration of attenuation of the direct and scat- 
tered beams: 

ll lz 

(13) 

In Eq. (13) integration is performed over the entire length of the direct and scattered beams in the medium 
(Fig. Ib). Upon reception of the scattered beam at low angles fl <__ 20 ~ given the condition Ag~ 1 ~ AQ2, we can 
take 12 - 13 and rewrite Eq. (13) in the following form: 

' ( ~ ' ' ) ~  C 0 " S ~ ~"  { P~ e X p I[ - ~ ~ (l) dl]} : cons ~ ,~i  (0 , ' ) ] (14 ) 

With consideration of Eq. (14), there follows from Eqs. (9), (12) and (13) a general expression for the ratio 
of the local mean numerical N s (cm -3) or mass Psd (kg. cm -3) particle concentrations in regions of the beams 
whose centers have the coordinates xiYiZi and xj, yj, zj [i]: 

Ns~ __ Psdl [ i(~, t) ] [ i(~, t) ]--1. (15) 
i~o, 0 J, I I ~ J ~  L IVs] 9sd] 

A similar relationship can be obtained for a polydispersed medium, characterized by a particle distribution 

over size f(rs), defined by the relationship dN(rs) = Nsf(rs)dr s. In this case Eq. (15) is written as 

Nsj ~(o, 0 .f" I(r.) dr. i(0, 0 ,!'f (r.) dr~ " 
rs i rs ] 

If the form of f(rs) is maintained within the flow volume, Eq. (16) takes on the form of Eq. (15); in the con- 
t r a ry  case ,  in order  to apply the method to polydispersed sys tems  it is neces sa ry  to determine the function 
f(r s) in each region and introduce a corresponding correct ion.  
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Equations (15) and (16) are  the operative formulas of the method. The task of the electronic apparatus 
is to express  the rat io i(/3, t) / i(0,  t) in the form of an e lect r ical  signal which is a function of flow coordinates.  
Fur ther  processing of graphs i(fi, t)/ i(0, t) = f(x, y, z) and reduction to the form of Eqs. (15) and (16) is 
car r ied  out by a computer  with graph plotting equipment. In real  experiments the dispers ion of the values 
i(0, t) is much less than the dispers ion of i (~, t), and the normalized rms e r r o r  4 of a single m e a s u r e m e n t  
in the case of frequency-l imited "white noise" can be determined f rom [5]: 

1 

It follows from Eq. (17) that { for given conditions depends on the values NsV and T, while the time for a 
single measurement does not exceed 30-60 sec and is limited by expenditure of the solid phase, and the quan- 
tity NsV is determined from the flow parameters and the resolution required. Under real conditions g lies in 
the interval 0.05 _< ~ < 0.20. The expression for the signal to noise ratio Ws/Wn, obtained as ratio of desired 
signal energy W s to "white noise" energy W n in the receiver frequency band Av without consideration of attenua- 
tion has the form 

Wn 2~r-----~ ~(2Z) <S(p~, It, A~)>. (18) 

It follows from Eq. (18) that to increase (Ws/Wn) it is necessary to increase the laser power P0 and narrow 
the receiver bandwidth Au with other parameters maintained constant. With simultaneous measurement of 
dispersed phase particle velocity profiles by laser Doppler anemometry the method also permits determina- 
tion of absolute particle concentration values for a number of symmetrical flows, For example, in the case 
of escape of a dispersed mixture from a circular tube of radius R T 

i �9 
( P s d ) i  = G {2 n (N,U~)i  (19) 

. (NsUs)max RTdR~ , 
0 

where G is the known value of the solid phase flow rate ,  kg/sec .  A typical distribution of gas phase velocity 
and velocity and concentration of A1203 part icles with 5 s = 44/ira in the section of a blunt jet x = 450 mm escap-  
ing from a c i r cu la r  tube with D T = 2R T = 33.8 mm, obtained by simultaneous use of the Doppler method and 
the technique described above, is shown in Fig. 2. 

By simultaneous use of l a se r  Doppler in te r fe romet ry  and the technique described above [6] various mo-  
difications of g a s - s o l i d  particle type flows were studied [7, 8], providing information necessary  to construct  
physical models of dispersed flows and to develop calculation methods. 

NOTATION 

Ps, particle diffraction parameter; rs, particle radius; rf, laser beam radius in constriction area; ~i, 
laser beam wave vector; P0, laser power; 10, light intensity at center of beam; x, y, z, Cartesian coordinates; 
fi, angle at which scattered light is received; a, size of diaphragm ahead of photodetector; dl, distance from 
measurement volume to receiver lens; fl, focal length of receiver lens; f0, focal length of transmitter lens; do, 
distance from laser to transmitter lens; 0, laser beam divergence angle; ire, equivalent radius of confocal 
resonator; ir, radius vector joining origin of coordinate system to observation point; f0, wave phase; E(ir, t), 
electric field intensity of laser beam; h0, wavelength of laser radiation; ~, magnetic permeability; a, dielec- 
tric permittivity; Ps(/~), light power scattered into angle fi; A~, solid angle; ~s, scattering vector; I(x, y, z), 
light intensity at point x, y, z; d~, differential scattering section; S(Ps, fi, A~), scattering section in receiver 
solid angle; %, transmission of receiver optical system; X, sensitivity coefficient, c = xrf; ~(){), probability 
integral; k@, current amplification; r b quantum efficiency of photodetector; e, electronic charge; h, Planck's 
constant; u0, laser radiation frequency; V, measurement volume; Ns, mean concentration of particles in volume 
V; Av, frequency passband of receiver; Ws, signal energy within receiver passband Av; Wn, noise energy in 
receiver passband; U0m gas velocity on jet axis in initial section; Usm, particle velocity on jet axis in initial 
section. 
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FORCED OSCILLATIONS IN A 

FLUIDIZED BED 

Yu. A. Buevich 

HOMOGENEOUSLY 

UDC 532.545 

The c h a r a c t e r i s t i c s  of the s t eady - s t a t e  osci l lat ions in a bed of finite height a re  considered;  the 
f requency dependence of the ampli tude is osc i l l a to ry ,  which enables one to identify d i s c r e t e  
s p e c t r a  of resonant  and ant i resonant  f requencies .  

One of the promising ways of accelerating transfer processes in fluidized beds is to superimpose an 
oscillation by means of pulsations in the pressure or flow rate of the fluidizing medium, or oscillations in the 
distribution grid, etc. In some cases, this simplifies the fluidization of finely divided materials, in which 
clumping is characteristic, and it also enables one to expand the existence limits for homogeneous fluidization. 

We therefore have to consider the distribution of the amplitude of the oscillations in the porosity, phase velo- 
cities, and so on over the volume of the layer and the relationship of these to the physical and other parameters 
of the system and to the external perturbation. 

The problem has been considered on several occasions for unbounded beds in relation to the stability of 
the homogeneous fluidized state (see [1-5] and reviews in [6, 7]). These studies imply instability in small 
perturbations, and the stabilizing effect of the internal stresses in the dispersed phase are insufficient to pro- 
vide stability at values of the parameters usually employed in fluidization [4, 5]. As the perturbations propa- 
gate, the nonlinear interactions between the perturbations differing in wavelength become important, which 
results in a generation of waves of considerable amplitude [8, 9], with a subsequent possible formation of 
bubbles and other discontinuities and the establishment of inhomogeneous fluidization. 

To a considerable extent, these conclusions were drawn because no allowance was made for the finite 
time spent by a perturbation in the bed or the stabilizing effect of the upper boundary. This time is finite in 

a bed of finite height and sometimes is insufficient for the perturbation amplitude to increase substantially 
(particularly in the fluidization of small particles by liquids), while the upper boundary in principle can give 
rise to a system of reflected waves, which interfere with the initial ones [i0, ii]. 

Here we consider the propagation of forced weak perturbations in a bounded layer of small particles 

fluidized by a gas. We neglect inertia, gravity, and viscous stresses in the gas, while the hydraulic resist- 
ance of the bed is considered a linear function of the infiltration speed. These assumptions simplify the ex- 
pressions considerably but do not affect the essentials of the problem. 

Linearized Equations. We consider the fluidized bed in a continuum approximation and write the equa- 
tions for conservation of mass and momentum of the phases in the form 

92_P at ~div(pw)~0' ap __div(ev)~0, d~p dw ~f~-d~pg, --Vp~ f~0, e---- 1--p. (i) 
Ot dt 
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